y=-(x^2/40)+31x/40+4/5

Simple and best practice solution for y=-(x^2/40)+31x/40+4/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=-(x^2/40)+31x/40+4/5 equation:


x in (-oo:+oo)

y = (31*x)/40-((x^2)/40)+4/5 // - (31*x)/40-((x^2)/40)+4/5

(x^2)/40-((31*x)/40)+y-(4/5) = 0

(x^2)/40+(-31/40)*x+y-4/5 = 0

1/40*x^2-31/40*x+y-4/5 = 0

DELTA = (-31/40)^2-(1/40*4*(y-4/5))

DELTA = 961/1600-1/10*(y-4/5)

961/1600-1/10*(y-4/5) = 0

(-1/10*1600*(y-4/5))/1600+961/1600 = 0

961-1/10*1600*(y-4/5) = 0

1089-160*y = 0

(1089-160*y)/1600 = 0

(1089-160*y)/1600 = 0 // * 1600

1089-160*y = 0

1089-160*y = 0 // - 1089

-160*y = -1089 // : -160

y = -1089/(-160)

y = 1089/160

DELTA = 0 <=> t_1 = 1089/160

x = 31/40/(1/40*2) i y = 1089/160

x = 31/2 i y = 1089/160

( x = ((961/1600-1/10*(y-4/5))^(1/2)+31/40)/(1/40*2) or x = (31/40-(961/1600-1/10*(y-4/5))^(1/2))/(1/40*2) ) i y > 1089/160

( x = 20*((961/1600-1/10*(y-4/5))^(1/2)+31/40) or x = 20*(31/40-(961/1600-1/10*(y-4/5))^(1/2)) ) i y > 1089/160

y-1089/160 > 0

y-1089/160 > 0 // + 1089/160

y > 1089/160

x in { 31/2, 20*((961/1600-1/10*(y-4/5))^(1/2)+31/40), 20*(31/40-(961/1600-1/10*(y-4/5))^(1/2)) }

See similar equations:

| 4q+b(p-2)= | | -x-15=-4x-24 | | 5x²=2-2x: | | 3x+4=210 | | 5x²=2-2x | | 5x²=2x-2x | | 5x=2x-2x | | 3x(x-2)=7x+4x | | -12/(x^(2))+1.5x^(0.5)=0 | | 1/(-12x^(2))+1.5x^(0.5)=0 | | 1.8+6(3.6)+-3.2=7.6 | | 5x-9=4x-3 | | 3(4x-5)=12 | | 5x+11=8x+32 | | -4x-17=-45 | | 533/(8x+1)=2x/(5+x) | | 11=x+0.05x+0.08x | | -3(2x-1)+3x=6x+3 | | Y=3x+4y=x-3 | | -2-(5-4p)= | | 11+2x=7+3x+4 | | Y=3x+2x^2-0.1x^3 | | 4p+3q=45 | | -45=5 | | 4a^2/b^2+8+4b^2/a^2 | | x-9=3x-23 | | 7-5x= | | -0.0023x^2+40=0 | | 6-1x= | | (x^2+4x)/(x^2+4x+4) | | 9x-4y=117 | | x^2/x+2=0 |

Equations solver categories